1,970 research outputs found

    An improved chaos method for monitoring the depth of anaesthesia

    Get PDF
    This paper proposed a new method to monitor the depth of anaesthesia (DoA) by modifying the Hurst parameters in Chaos method. Two new indices (CDoA and CsDoA) are proposed to estimate the anaesthesia states of patients. In order to reduce the fluctuation of CDoA and CsDoA trends, the Chaos and Modified Detrended Average methods (C-MDMA) are combined together. Compared with Bispectrum (BIS) index, CDoA, the CsDoA and C-MDMA trends are close to the BIS trend in the whole scale from 100 to 0 with a full recording time

    Q-enhanced fold-and-bond MEMS inductors

    Get PDF
    This work presents a novel coil fabrication technology to enhance quality factor (Q factor) of microfabricated inductors for implanted medical wireless sensing and data/power transfer applications. Using parylene as a flexible thin-film device substrate, a post-microfabrication substrate folding-and-bonding method is developed to effectively increase the metal thickness of the surface-micromachined inductors, resulting in their lower self-resistance so their higher quality factor. One-fold-and-bond coils are successfully demonstrated as an example to verify the feasibility of the fabrication technology with measurement results in good agreements with device simulation. Depending on target specifications, multiple substrate folding-and-bonding can be extensively implemented to facilitate further improved electrical characteristics of the coils from single fabrication batch. Such Q-enhanced inductors can be broadly utilized with great potentials in flexible integrated wireless devices/systems for intraocular prostheses and other biomedical implants

    Local Cyber-physical Attack with Leveraging Detection in Smart Grid

    Full text link
    A well-designed attack in the power system can cause an initial failure and then results in large-scale cascade failure. Several works have discussed power system attack through false data injection, line-maintaining attack, and line-removing attack. However, the existing methods need to continuously attack the system for a long time, and, unfortunately, the performance cannot be guaranteed if the system states vary. To overcome this issue, we consider a new type of attack strategy called combinational attack which masks a line-outage at one position but misleads the control center on line outage at another position. Therefore, the topology information in the control center is interfered by our attack. We also offer a procedure of selecting the vulnerable lines of its kind. The proposed method can effectively and continuously deceive the control center in identifying the actual position of line-outage. The system under attack will be exposed to increasing risks as the attack continuously. Simulation results validate the efficiency of the proposed attack strategy.Comment: Accepted by IEEE SmartGridComm 201

    The local relaxation and correlation production in the quantum Ising model

    Full text link
    Isolated quantum systems follow the unitary evolution, which guarantees the full many body state always keeps a constant entropy as its initial one. Here we consider the local dynamics of a quantum Ising model with a finite size. It turns out, for both strong and weak coupling situations, the dynamics of local observables exhibits similar relaxation behavior as the macroscopic thermodynamics, which is called the local relaxation; after a certain typical time, the relaxation behavior suddenly changes and appears random, which is referred as a recurrence. Besides, we find that the total correlation entropy of this system approximately exhibit a monotonic increasing envelope in both strong and weak coupling cases, which is quite similar as the irreversible entropy production in the standard macroscopic thermodynamics.Comment: 6 pages, 2 figure

    Local Cyber-Physical Attack for Masking Line Outage and Topology Attack in Smart Grid

    Full text link
    Malicious attacks in the power system can eventually result in a large-scale cascade failure if not attended on time. These attacks, which are traditionally classified into \emph{physical} and \emph{cyber attacks}, can be avoided by using the latest and advanced detection mechanisms. However, a new threat called \emph{cyber-physical attacks} which jointly target both the physical and cyber layers of the system to interfere the operations of the power grid is more malicious as compared with the traditional attacks. In this paper, we propose a new cyber-physical attack strategy where the transmission line is first physically disconnected, and then the line-outage event is masked, such that the control center is misled into detecting as an obvious line outage at a different position in the local area of the power system. Therefore, the topology information in the control center is interfered by our attack. We also propose a novel procedure for selecting vulnerable lines, and analyze the observability of our proposed framework. Our proposed method can effectively and continuously deceive the control center into detecting fake line-outage positions, and thereby increase the chance of cascade failure because the attention is given to the fake outage. The simulation results validate the efficiency of our proposed attack strategy.Comment: accepted by IEEE Transactions on Smart Grid. arXiv admin note: text overlap with arXiv:1708.0320

    Geography, trade and power-law phenomena

    Get PDF
    corecore